Constraints in Identification of Multi-Loop Feedforward Human Control Models
نویسندگان
چکیده
The human controller (HC) can greatly improve target-tracking performance by utilizing a feedforward operation on the target signal, in addition to a feedback response. System identification methods are used to determine the correct HC model structure: purely feedback or a combined feedforward/feedback model. In this paper, we investigate three central issues that complicate this objective. First, the identification method should not require prior assumptions regarding the dynamics of the feedforward and feedback components. Second, severe biases might be introduced by high levels of noise in the data measured under closed-loop conditions. To address the first two issues, we will consider two identification methods that make use of linear ARX models: the classic direct method and the two-stage indirect method of van den Hof and Schrama (1993). Third, model complexity should be considered in the selection of the ‘best’ ARX model to prevent ‘false-positive’ feedforward identification. Various model selection criteria, that make an explicit trade-off between model quality and model complexity, are considered. Based on computer simulations with a HC model, we conclude that 1) the direct method provides more accurate estimates in the frequency range of interest, and 2) existing model selection criteria do not prevent false-positive feedforward identification. Copyright c ©2016 IFAC
منابع مشابه
Latency Compensation in Multi Chaotic Systems Using the Extended OGY Control Method
The problem discussed in this paper is the effect of latency time on the OGY chaos control methodology in multi chaotic systems. The Smith predictor, rhythmic and memory strategies are embedded in the OGY chaos control method to encounter loop latency. A comparison study is provided and the advantages of the Smith predictor approach are clearly evident from the closed loop responses. The comple...
متن کاملMinimum-time Feedforward Plus PID Control for MIMO Systems ⋆
In this paper we propose a technique for the determination of a feedforward control law to be applied to a closed-loop PID-based control system for a multi-input multi-output process in order to achieve a minimum-time transition of the outputs subject to constraints on both the control variables and the system outputs. The optimal command inputs are determined by suitably approximating the stat...
متن کاملPresentation of quasi-linear piecewise selected models simultaneously with designing of bump-less optimal robust controller for nonlinear vibration control of composite plates
The idea of using quasi-linear piecewise models has been established on the decomposition of complicated nonlinear systems, simultaneously designing with local controllers. Since the proper performance and the final system close loop stability are vital in multi-model controllers designing, the main problem in multi-model controllers is the number of the local models and their position not payi...
متن کاملMinimum-time rest-to-rest feedforward action for PID feedback MIMO systems
In this paper we present a methodology for the design of a feedforward control law to be applied to a closed-loop PID-based control system for a multi-input multi-output process in order to achieve a minimum-time rest-to-rest transition of the system from an equilibrium point to another subject to constraints on both the control and process variables. In particular, the proposed approach uses d...
متن کاملIdentification and Control of MIMO Systems with State Time Delay (Short Communication)
Time-delay identification is one of the most important parameters in designing controllers. In the cases where the number of inputs and outputs in a system are more than one, this identification is of great concern. In this paper, a novel autocorrelation-based scheme for the state variable time-delay identification for multi-input multi-output (MIMO) system has been presented. This method is ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016